2.6.1 java.lang.reflect.Member
2.6.2 java.lang.reflect.GenericDeclaration
2.6.3 java.lang.reflect.AnnotatedElement
2.6.4 java.lang.reflect.Executable
2.6.5 java.lang.reflect.AccessibleObject
2.6.6 java.lang.reflect.Constructor
2.6.9 java.lang.reflect.Parameter
2.6.10 java.lang.reflect.Proxy
2.6.11 java.lang.reflect.WeakCache
2.11 java.lang. AbstractStringBuilder
3.6 java.io. FilterInputStream
3.8 java.io. SocketInputStream
3.9 java.io. ObjectOutputStream
3.9.1 java.io. ObjectOutputStream. BlockDataOutputStream
3.13 java.io. DefaultFileSystem
3.15 java.io. FileOutputStream
4.4 java.net. AbstractPlainSocketImpl
5.2 java.nio.channels. SelectableChannel
5.3 java.nio.channels. AbstractSelectableChannel
5.4 java.nio.channels. ServerSocketChannel
5.5 java.nio.channels.SelectionKey
5.6 sun.nio.ch.WindowsSelectorImpl
5.7 sun.nio.ch.WindowsSelectorImpl. SubSelector
6.6 java.util. AbstractCollection
6.8 java.util. AbstractSequentialList
6.22.1 java.util.concurrent. Semaphore
6.22.1.1 java.util.concurrent. Semaphore. FairSync
6.22.1.2 java.util.concurrent. Semaphore. NonfairSync
6.22.2 java.util.concurrent. CyclicBarrier
6.22.3 java.util.concurrent. CountDownLatch
6.22.4 java.util.concurrent. Executor
6.22.5 java.util.concurrent. Executors
6.22.6 java.util.concurrent. AbstractExecutorService
6.22.7 java.util.concurrent. Future
6.22.8 java.util.concurrent. ForkJoinTask
6.22.9 java.util.concurrent. ForkJoinPool
6.22.10 java.util.concurrent.locks
6.22.10.1 java.util.concurrent.locks.lock
6.22.10.2 java.util.concurrent.locks. LockSupport
6.22.10.3 java.util.concurrent.locks. AbstractOwnableSynchronizer
6.22.10.4 java.util.concurrent.locks. AbstractQueuedSynchronizer
6.22.10.5 java.util.concurrent.locks. ReentrantLock
6.22.10.6 java.util.concurrent.locks. Condition
6.22.10.7 java.util.concurrent.locks. ReentrantReadWriteLock
6.22.11 java.util.concurrent.atomic
6.22.11.1 java.util.concurrent.atomic. AtomicInteger
6.22.11.2 java.util.concurrent.atomic. AtomicReference
Java Version: jdk1.8
java.lang.Class
public final class Class<T> implements java.io.Serializable,
GenericDeclaration,
Type,
AnnotatedElement {
private static final int ANNOTATION= 0x00002000;
private static final int ENUM = 0x00004000;
private static final int SYNTHETIC = 0x00001000;
private Class(ClassLoader loader) {
classLoader = loader;
}
@CallerSensitive
public static Class<?> forName(String className)
throws ClassNotFoundException {
Class<?> caller = Reflection.getCallerClass();
return forName0(className, true, ClassLoader.getClassLoader(caller), caller);
}
@CallerSensitive
public Constructor<T> getConstructor(Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException {
checkMemberAccess(Member.PUBLIC, Reflection.getCallerClass(), true);
return getConstructor0(parameterTypes, Member.PUBLIC);
}
@Override
@SuppressWarnings("unchecked")
public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
Objects.requireNonNull(annotationClass);
return (A) annotationData().declaredAnnotations.get(annotationClass);
}
@CallerSensitive
public Field getDeclaredField(String name)
throws NoSuchFieldException, SecurityException {
checkMemberAccess(Member.DECLARED, Reflection.getCallerClass(), true);
Field field = searchFields(privateGetDeclaredFields(false), name);
if (field == null) {
throw new NoSuchFieldException(name);
}
return field;
}
@CallerSensitive
public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException {
checkMemberAccess(Member.DECLARED, Reflection.getCallerClass(), true);
Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(getName() + "." + name + argumentTypesToString(parameterTypes));
}
return method;
}
java.lang.Class.Atomic
private static class Atomic {
// initialize Unsafe machinery here, since we need to call Class.class instance method
// and have to avoid calling it in the static initializer of the Class class...
private static final Unsafe unsafe = Unsafe.getUnsafe();
// offset of Class.reflectionData instance field
private static final long reflectionDataOffset;
// offset of Class.annotationType instance field
private static final long annotationTypeOffset;
// offset of Class.annotationData instance field
private static final long annotationDataOffset;
static {
Field[] fields = Class.class.getDeclaredFields0(false); // bypass caches
reflectionDataOffset = objectFieldOffset(fields, "reflectionData");
annotationTypeOffset = objectFieldOffset(fields, "annotationType");
annotationDataOffset = objectFieldOffset(fields, "annotationData");
}
private static long objectFieldOffset(Field[] fields, String fieldName) {
Field field = searchFields(fields, fieldName);
if (field == null) {
throw new Error("No " + fieldName + " field found in java.lang.Class");
}
return unsafe.objectFieldOffset(field);
}
static <T> boolean casReflectionData(Class<?> clazz,
SoftReference<ReflectionData<T>> oldData,
SoftReference<ReflectionData<T>> newData) {
return unsafe.compareAndSwapObject(clazz, reflectionDataOffset, oldData, newData);
}
static <T> boolean casAnnotationType(Class<?> clazz,
AnnotationType oldType,
AnnotationType newType) {
return unsafe.compareAndSwapObject(clazz, annotationTypeOffset, oldType, newType);
}
static <T> boolean casAnnotationData(Class<?> clazz,
AnnotationData oldData,
AnnotationData newData) {
return unsafe.compareAndSwapObject(clazz, annotationDataOffset, oldData, newData);
}
}
java.lang. Class. AnnotationData的主要属性
private static class AnnotationData {
final Map<Class<? extends Annotation>, Annotation> annotations;
final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
// Value of classRedefinedCount when we created this AnnotationData instance
final int redefinedCount;
AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
int redefinedCount) {
this.annotations = annotations;
this.declaredAnnotations = declaredAnnotations;
this.redefinedCount = redefinedCount;
}
}
// Annotations cache
@SuppressWarnings("UnusedDeclaration")
private volatile transient AnnotationData annotationData;
private AnnotationData annotationData() {
while (true) { // retry loop
AnnotationData annotationData = this.annotationData;
int classRedefinedCount = this.classRedefinedCount;
if (annotationData != null &&
annotationData.redefinedCount == classRedefinedCount) {
return annotationData;
}
// null or stale annotationData -> optimistically create new instance
AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
// try to install it
if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
// successfully installed new AnnotationData
return newAnnotationData;
}
}
}
private AnnotationData createAnnotationData(int classRedefinedCount) {
Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
Class<?> superClass = getSuperclass();
Map<Class<? extends Annotation>, Annotation> annotations = null;
if (superClass != null) {
Map<Class<? extends Annotation>, Annotation> superAnnotations =
superClass.annotationData().annotations;
for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
Class<? extends Annotation> annotationClass = e.getKey();
if (AnnotationType.getInstance(annotationClass).isInherited()) {
if (annotations == null) { // lazy construction
annotations = new LinkedHashMap<>((Math.max(
declaredAnnotations.size(),
Math.min(12, declaredAnnotations.size() + superAnnotations.size())
) * 4 + 2) / 3
);
}
annotations.put(annotationClass, e.getValue());
}
}
}
if (annotations == null) {
// no inherited annotations -> share the Map with declaredAnnotations
annotations = declaredAnnotations;
} else {
// at least one inherited annotation -> declared may override inherited
annotations.putAll(declaredAnnotations);
}
return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
}
java.lang. Class. ReflectionData
private static class ReflectionData<T> {
volatile Field[] declaredFields;
volatile Field[] publicFields;
volatile Method[] declaredMethods;
volatile Method[] publicMethods;
volatile Constructor<T>[] declaredConstructors;
volatile Constructor<T>[] publicConstructors;
// Intermediate results for getFields and getMethods
volatile Field[] declaredPublicFields;
volatile Method[] declaredPublicMethods;
volatile Class<?>[] interfaces;
// Cached names
String simpleName;
String canonicalName;
static final String NULL_SENTINEL = new String();
// Value of classRedefinedCount when we created this ReflectionData instance
final int redefinedCount;
ReflectionData(int redefinedCount) {
this.redefinedCount = redefinedCount;
}
}
private transient volatile SoftReference<ReflectionData<T>> reflectionData;
// Incremented by the VM on each call to JVM TI RedefineClasses()
// that redefines this class or a superclass.
private transient volatile int classRedefinedCount;
// Lazily create and cache ReflectionData
private ReflectionData<T> reflectionData() {
SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
int classRedefinedCount = this.classRedefinedCount;
ReflectionData<T> rd;
if (reflectionData != null &&
(rd = reflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
// else no SoftReference or cleared SoftReference or stale ReflectionData
// -> create and replace new instance
return newReflectionData(reflectionData, classRedefinedCount);
}
private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
int classRedefinedCount) {
while (true) {
ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
// try to CAS it...
if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
return rd;
}
// else retry
oldReflectionData = this.reflectionData;
classRedefinedCount = this.classRedefinedCount;
if (oldReflectionData != null &&
(rd = oldReflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
}
}
java.lang. Object
public class Object {
private static native void registerNatives();
static {
registerNatives();
}
public final native Class<?> getClass();
public native int hashCode();
public boolean equals(Object obj) {
return (this == obj);
}
protected native Object clone() throws CloneNotSupportedException;
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;
public final void wait(long timeout, int nanos) throws InterruptedException {
if (timeout < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException(
"nanosecond timeout value out of range");
}
if (nanos > 0) {
timeout++;
}
wait(timeout);
}
public final void wait() throws InterruptedException {
wait(0);
}
protected void finalize() throws Throwable { }
}
线程java.lang.Runnable
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
线程java.lang.Thread的主要属性
Public class Thread implements Runnable {
private volatile String name;
private boolean daemon = false;
private ThreadGroup group;
private ClassLoader contextClassLoader;
ThreadLocal.ThreadLocalMap threadLocals = null;
private long stackSize;
private long tid;// Thread ID
/* For generating thread ID */
private static long threadSeqNumber;
}
线程java.lang.Thread的主要init方法
public Thread(ThreadGroup group, Runnable target) {
init(group, target, "Thread-" + nextThreadNum(), 0);
}
private void init(ThreadGroup g, Runnable target, String name,
long stackSize, AccessControlContext acc,
boolean inheritThreadLocals) {
if (name == null) {
throw new NullPointerException("name cannot be null");
}
this.name = name;
Thread parent = currentThread();
SecurityManager security = System.getSecurityManager();
if (g == null) {
/* Determine if it's an applet or not */
/* If there is a security manager, ask the security manager
what to do. */
if (security != null) {
g = security.getThreadGroup();
}
/* If the security doesn't have a strong opinion of the matter
use the parent thread group. */
if (g == null) {
g = parent.getThreadGroup();
}
}
/* checkAccess regardless of whether or not threadgroup is
explicitly passed in. */
g.checkAccess();
/*
* Do we have the required permissions?
*/
if (security != null) {
if (isCCLOverridden(getClass())) {
security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
}
g.addUnstarted();
this.group = g;
this.daemon = parent.isDaemon();
this.priority = parent.getPriority();
if (security == null || isCCLOverridden(parent.getClass()))
this.contextClassLoader = parent.getContextClassLoader();
else
this.contextClassLoader = parent.contextClassLoader;
this.inheritedAccessControlContext =
acc != null ? acc : AccessController.getContext();
this.target = target;
setPriority(priority);
if (inheritThreadLocals && parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
/* Stash the specified stack size in case the VM cares */
this.stackSize = stackSize;
/* Set thread ID */
tid = nextThreadID();
}
线程java.lang.Thread .State的state
public enum State {
/**
* Thread state for a thread which has not yet started.
*/
NEW,
/**
* Thread state for a runnable thread. A thread in the runnable
* state is executing in the Java virtual machine but it may
* be waiting for other resources from the operating system
* such as processor.
*/
RUNNABLE,
/**
* Thread state for a thread blocked waiting for a monitor lock.
* A thread in the blocked state is waiting for a monitor lock
* to enter a synchronized block/method or
* reenter a synchronized block/method after calling
* {@link Object#wait() Object.wait}.
*/
BLOCKED,
/**
* Thread state for a waiting thread.
* A thread is in the waiting state due to calling one of the
* following methods:
* <ul>
* <li>{@link Object#wait() Object.wait} with no timeout</li>
* <li>{@link #join() Thread.join} with no timeout</li>
* <li>{@link LockSupport#park() LockSupport.park}</li>
* </ul>
*
* <p>A thread in the waiting state is waiting for another thread to
* perform a particular action.
*
* For example, a thread that has called <tt>Object.wait()</tt>
* on an object is waiting for another thread to call
* <tt>Object.notify()</tt> or <tt>Object.notifyAll()</tt> on
* that object. A thread that has called <tt>Thread.join()</tt>
* is waiting for a specified thread to terminate.
*/
WAITING,
/**
* Thread state for a waiting thread with a specified waiting time.
* A thread is in the timed waiting state due to calling one of
* the following methods with a specified positive waiting time:
* <ul>
* <li>{@link #sleep Thread.sleep}</li>
* <li>{@link Object#wait(long) Object.wait} with timeout</li>
* <li>{@link #join(long) Thread.join} with timeout</li>
* <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li>
* <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li>
* </ul>
*/
TIMED_WAITING,
/**
* Thread state for a terminated thread.
* The thread has completed execution.
*/
TERMINATED;
}
线程java.lang.Thread 的start
public synchronized void start() {
if (threadStatus != 0)
throw new IllegalThreadStateException();
group.add(this);
boolean started = false;
try {
start0();
started = true;
} finally {
try {
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
}
}
}
private native void start0();
线程java.lang.Thread 的run
public void run() {
if (target != null) {
target.run();
}
}
线程java.lang.Thread 的join
public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}
线程java.lang.Thread 的yield
public static native void yield();
线程java.lang.Thread 的resume
@Deprecated
public final void resume() {
checkAccess();
resume0();
}
private native void resume0();
线程java.lang.Thread 的sleep
public static native void sleep(long millis) throws InterruptedException;
线程java.lang.Thread 的interrupt
public void interrupt() {
if (this != Thread.currentThread())
checkAccess();
synchronized (blockerLock) {
Interruptible b = blocker;
if (b != null) {
interrupt0(); // Just to set the interrupt flag
b.interrupt(this);
return;
}
}
interrupt0();
}
private native void interrupt0();
线程java.lang.Thread 的suspend
@Deprecated
public final void suspend() {
checkAccess();
suspend0();
}
private native void suspend0();
线程java.lang.Thread 的stop
public final void stop() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
checkAccess();
if (this != Thread.currentThread()) {
security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
}
}
// A zero status value corresponds to "NEW", it can't change to
// not-NEW because we hold the lock.
if (threadStatus != 0) {
resume(); // Wake up thread if it was suspended; no-op otherwise
}
// The VM can handle all thread states
stop0(new ThreadDeath());
}
private native void stop0(Object o);
java.lang.reflect.Member
public interface Member {
public static final int PUBLIC = 0;
public static final int DECLARED = 1;
public Class<?> getDeclaringClass();
public String getName();
public int getModifiers();
public boolean isSynthetic();
}
java.lang.reflect. GenericDeclaration
public interface GenericDeclaration extends AnnotatedElement {
public TypeVariable<?>[] getTypeParameters();
}
java.lang.reflect. AnnotatedElement
public interface AnnotatedElement {
default boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
return getAnnotation(annotationClass) != null;
}
<T extends Annotation> T getAnnotation(Class<T> annotationClass);
Annotation[] getAnnotations();
Annotation[] getDeclaredAnnotations();
}
java.lang.reflect. Executable
public abstract class Executable extends AccessibleObject
implements Member, GenericDeclaration {
Executable() {}
private native Parameter[] getParameters0();
native byte[] getTypeAnnotationBytes0();
}
java.lang.reflect. AccessibleObject
public class AccessibleObject implements AnnotatedElement {
static final private java.security.Permission ACCESS_PERMISSION =
new ReflectPermission("suppressAccessChecks");
public static void setAccessible(AccessibleObject[] array, boolean flag)
throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
for (int i = 0; i < array.length; i++) {
setAccessible0(array[i], flag);
}
}
public void setAccessible(boolean flag) throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
setAccessible0(this, flag);
}
private static void setAccessible0(AccessibleObject obj, boolean flag)
throws SecurityException
{
if (obj instanceof Constructor && flag == true) {
Constructor<?> c = (Constructor<?>)obj;
if (c.getDeclaringClass() == Class.class) {
throw new SecurityException("Cannot make a java.lang.Class" +
" constructor accessible");
}
}
obj.override = flag;
}
public boolean isAccessible() {
return override;
}
protected AccessibleObject() {}
}
java.lang.reflect. Constructor
public final class Constructor<T> extends Executable {
private Class<T> clazz;
private int slot;
private Class<?>[] parameterTypes;
private Class<?>[] exceptionTypes;
private int modifiers;
// Generics and annotations support
private transient String signature;
// generic info repository; lazily initialized
private transient ConstructorRepository genericInfo;
private byte[] annotations;
private byte[] parameterAnnotations;
public T newInstance(Object ... initargs)
throws InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException
{
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
checkAccess(caller, clazz, null, modifiers);
}
}
if ((clazz.getModifiers() & Modifier.ENUM) != 0)
throw new IllegalArgumentException("Cannot reflectively create enum objects");
ConstructorAccessor ca = constructorAccessor; // read volatile
if (ca == null) {
ca = acquireConstructorAccessor();
}
@SuppressWarnings("unchecked")
T inst = (T) ca.newInstance(initargs);
return inst;
}
}
java.lang.reflect.Field
public final
class Field extends AccessibleObject implements Member {
private Class<?> clazz;
private int slot;
private String name;
private Class<?> type;
private int modifiers;
// Generics and annotations support
private transient String signature;
// generic info repository; lazily initialized
private transient FieldRepository genericInfo;
private byte[] annotations;
// Cached field accessor created without override
private FieldAccessor fieldAccessor;
// Cached field accessor created with override
private FieldAccessor overrideFieldAccessor;
private Field root;
Field(Class<?> declaringClass,
String name,
Class<?> type,
int modifiers,
int slot,
String signature,
byte[] annotations)
{
this.clazz = declaringClass;
this.name = name;
this.type = type;
this.modifiers = modifiers;
this.slot = slot;
this.signature = signature;
this.annotations = annotations;
}
private void setFieldAccessor(FieldAccessor accessor, boolean overrideFinalCheck) {
if (overrideFinalCheck)
overrideFieldAccessor = accessor;
else
fieldAccessor = accessor;
// Propagate up
if (root != null) {
root.setFieldAccessor(accessor, overrideFinalCheck);
}
}
}
java.lang.reflect. Method
public final class Method extends Executable {
private Class<?> clazz;
private int slot;
// This is guaranteed to be interned by the VM in the 1.4
// reflection implementation
private String name;
private Class<?> returnType;
private Class<?>[] parameterTypes;
private Class<?>[] exceptionTypes;
private int modifiers;
// Generics and annotations support
private transient String signature;
// generic info repository; lazily initialized
private transient MethodRepository genericInfo;
private byte[] annotations;
private byte[] parameterAnnotations;
private byte[] annotationDefault;
private volatile MethodAccessor methodAccessor;
private Method root;
// Generics infrastructure
private String getGenericSignature() {return signature;}
// Accessor for factory
private GenericsFactory getFactory() {
// create scope and factory
return CoreReflectionFactory.make(this, MethodScope.make(this));
}
// Accessor for generic info repository
@Override
MethodRepository getGenericInfo() {
// lazily initialize repository if necessary
if (genericInfo == null) {
// create and cache generic info repository
genericInfo = MethodRepository.make(getGenericSignature(),
getFactory());
}
return genericInfo; //return cached repository
}
Method(Class<?> declaringClass,
String name,
Class<?>[] parameterTypes,
Class<?> returnType,
Class<?>[] checkedExceptions,
int modifiers,
int slot,
String signature,
byte[] annotations,
byte[] parameterAnnotations,
byte[] annotationDefault) {
this.clazz = declaringClass;
this.name = name;
this.parameterTypes = parameterTypes;
this.returnType = returnType;
this.exceptionTypes = checkedExceptions;
this.modifiers = modifiers;
this.slot = slot;
this.signature = signature;
this.annotations = annotations;
this.parameterAnnotations = parameterAnnotations;
this.annotationDefault = annotationDefault;
}
void setMethodAccessor(MethodAccessor accessor) {
methodAccessor = accessor;
// Propagate up
if (root != null) {
root.setMethodAccessor(accessor);
}
}
}
java.lang.reflect. Parameter
public final class Parameter implements AnnotatedElement {
private final String name;
private final int modifiers;
private final Executable executable;
private final int index;
Parameter(String name,
int modifiers,
Executable executable,
int index) {
this.name = name;
this.modifiers = modifiers;
this.executable = executable;
this.index = index;
}
public String getName() {
// Note: empty strings as paramete names are now outlawed.
// The .equals("") is for compatibility with current JVM
// behavior. It may be removed at some point.
if(name == null || name.equals(""))
return "arg" + index;
else
return name;
}
// Package-private accessor to the real name field.
String getRealName() {
return name;
}
public Type getParameterizedType() {
Type tmp = parameterTypeCache;
if (null == tmp) {
tmp = executable.getAllGenericParameterTypes()[index];
parameterTypeCache = tmp;
}
return tmp;
}
private transient volatile Type parameterTypeCache = null;
public Class<?> getType() {
Class<?> tmp = parameterClassCache;
if (null == tmp) {
tmp = executable.getParameterTypes()[index];
parameterClassCache = tmp;
}
return tmp;
}
}
java.lang.reflect. Proxy
public class Proxy implements java.io.Serializable {
private static final long serialVersionUID = -2222568056686623797L;
private static final Class<?>[] constructorParams =
{ InvocationHandler.class };
private static final WeakCache<ClassLoader, Class<?>[], Class<?>>
proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());
protected InvocationHandler h;
private Proxy() {
}
protected Proxy(InvocationHandler h) {
Objects.requireNonNull(h);
this.h = h;
}
}
java.lang.reflect. Proxy生成实例对象newProxyInstance方法
@CallerSensitive
public static Object newProxyInstance(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
Objects.requireNonNull(h);
final Class<?>[] intfs = interfaces.clone();
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}
/*
* Look up or generate the designated proxy class.
*/
Class<?> cl = getProxyClass0(loader, intfs);
/*
* Invoke its constructor with the designated invocation handler.
*/
try {
if (sm != null) {
checkNewProxyPermission(Reflection.getCallerClass(), cl);
}
final Constructor<?> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
if (!Modifier.isPublic(cl.getModifiers())) {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
cons.setAccessible(true);
return null;
}
});
}
return cons.newInstance(new Object[]{h});
} catch (IllegalAccessException|InstantiationException e) {
throw new InternalError(e.toString(), e);
} catch (InvocationTargetException e) {
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
}
}
private static void checkNewProxyPermission(Class<?> caller, Class<?> proxyClass) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
if (ReflectUtil.isNonPublicProxyClass(proxyClass)) {
ClassLoader ccl = caller.getClassLoader();
ClassLoader pcl = proxyClass.getClassLoader();
// do permission check if the caller is in a different runtime package
// of the proxy class
int n = proxyClass.getName().lastIndexOf('.');
String pkg = (n == -1) ? "" : proxyClass.getName().substring(0, n);
n = caller.getName().lastIndexOf('.');
String callerPkg = (n == -1) ? "" : caller.getName().substring(0, n);
if (pcl != ccl || !pkg.equals(callerPkg)) {
sm.checkPermission(new ReflectPermission("newProxyInPackage." + pkg));
}
}
}
}
java.lang.reflect. WeakCache
final class WeakCache<K, P, V> {
private final ReferenceQueue<K> refQueue
= new ReferenceQueue<>();
// the key type is Object for supporting null key
private final ConcurrentMap<Object, ConcurrentMap<Object, Supplier<V>>> map
= new ConcurrentHashMap<>();
private final ConcurrentMap<Supplier<V>, Boolean> reverseMap
= new ConcurrentHashMap<>();
private final BiFunction<K, P, ?> subKeyFactory;
private final BiFunction<K, P, V> valueFactory;
public WeakCache(BiFunction<K, P, ?> subKeyFactory,
BiFunction<K, P, V> valueFactory) {
this.subKeyFactory = Objects.requireNonNull(subKeyFactory);
this.valueFactory = Objects.requireNonNull(valueFactory);
}
public V get(K key, P parameter) {
Objects.requireNonNull(parameter);
expungeStaleEntries();
Object cacheKey = CacheKey.valueOf(key, refQueue);
// lazily install the 2nd level valuesMap for the particular cacheKey
ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
if (valuesMap == null) {
ConcurrentMap<Object, Supplier<V>> oldValuesMap
= map.putIfAbsent(cacheKey,
valuesMap = new ConcurrentHashMap<>());
if (oldValuesMap != null) {
valuesMap = oldValuesMap;
}
}
// create subKey and retrieve the possible Supplier<V> stored by that
// subKey from valuesMap
Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
Supplier<V> supplier = valuesMap.get(subKey);
Factory factory = null;
while (true) {
if (supplier != null) {
// supplier might be a Factory or a CacheValue<V> instance
V value = supplier.get();
if (value != null) {
return value;
}
}
// else no supplier in cache
// or a supplier that returned null (could be a cleared CacheValue
// or a Factory that wasn't successful in installing the CacheValue)
// lazily construct a Factory
if (factory == null) {
factory = new Factory(key, parameter, subKey, valuesMap);
}
if (supplier == null) {
supplier = valuesMap.putIfAbsent(subKey, factory);
if (supplier == null) {
// successfully installed Factory
supplier = factory;
}
// else retry with winning supplier
} else {
if (valuesMap.replace(subKey, supplier, factory)) {
// successfully replaced
// cleared CacheEntry / unsuccessful Factory
// with our Factory
supplier = factory;
} else {
// retry with current supplier
supplier = valuesMap.get(subKey);
}
}
}
}
public boolean containsValue(V value) {
Objects.requireNonNull(value);
expungeStaleEntries();
return reverseMap.containsKey(new LookupValue<>(value));
}
public int size() {
expungeStaleEntries();
return reverseMap.size();
}
private void expungeStaleEntries() {
CacheKey<K> cacheKey;
while ((cacheKey = (CacheKey<K>)refQueue.poll()) != null) {
cacheKey.expungeFrom(map, reverseMap);
}
}
private final class Factory implements Supplier<V> {
private final K key;
private final P parameter;
private final Object subKey;
private final ConcurrentMap<Object, Supplier<V>> valuesMap;
Factory(K key, P parameter, Object subKey,
ConcurrentMap<Object, Supplier<V>> valuesMap) {
this.key = key;
this.parameter = parameter;
this.subKey = subKey;
this.valuesMap = valuesMap;
}
@Override
public synchronized V get() { // serialize access
// re-check
Supplier<V> supplier = valuesMap.get(subKey);
if (supplier != this) {
return null;
}
// else still us (supplier == this)
// create new value
V value = null;
try {
value = Objects.requireNonNull(valueFactory.apply(key, parameter));
} finally {
if (value == null) { // remove us on failure
valuesMap.remove(subKey, this);
}
}
// the only path to reach here is with non-null value
assert value != null;
// wrap value with CacheValue (WeakReference)
CacheValue<V> cacheValue = new CacheValue<>(value);
// put into reverseMap
reverseMap.put(cacheValue, Boolean.TRUE);
// try replacing us with CacheValue (this should always succeed)
if (!valuesMap.replace(subKey, this, cacheValue)) {
throw new AssertionError("Should not reach here");
}
// successfully replaced us with new CacheValue -> return the value
// wrapped by it
return value;
}
}
private interface Value<V> extends Supplier<V> {}
private static final class LookupValue<V> implements Value<V> {
private final V value;
LookupValue(V value) {
this.value = value;
}
@Override
public V get() {
return value;
}
@Override
public int hashCode() {
return System.identityHashCode(value); // compare by identity
}
@Override
public boolean equals(Object obj) {
return obj == this ||
obj instanceof Value &&
this.value == ((Value<?>) obj).get(); // compare by identity
}
}
private static final class CacheValue<V>
extends WeakReference<V> implements Value<V>
{
private final int hash;
CacheValue(V value) {
super(value);
this.hash = System.identityHashCode(value); // compare by identity
}
@Override
public int hashCode() {
return hash;
}
@Override
public boolean equals(Object obj) {
V value;
return obj == this ||
obj instanceof Value &&
// cleared CacheValue is only equal to itself
(value = get()) != null &&
value == ((Value<?>) obj).get(); // compare by identity
}
}
private static final class CacheKey<K> extends WeakReference<K> {
// a replacement for null keys
private static final Object NULL_KEY = new Object();
static <K> Object valueOf(K key, ReferenceQueue<K> refQueue) {
return key == null
// null key means we can't weakly reference it,
// so we use a NULL_KEY singleton as cache key
? NULL_KEY
// non-null key requires wrapping with a WeakReference
: new CacheKey<>(key, refQueue);
}
private final int hash;
private CacheKey(K key, ReferenceQueue<K> refQueue) {
super(key, refQueue);
this.hash = System.identityHashCode(key); // compare by identity
}
@Override
public int hashCode() {
return hash;
}
@Override
public boolean equals(Object obj) {
K key;
return obj == this ||
obj != null &&
obj.getClass() == this.getClass() &&
// cleared CacheKey is only equal to itself
(key = this.get()) != null &&
// compare key by identity
key == ((CacheKey<K>) obj).get();
}
void expungeFrom(ConcurrentMap<?, ? extends ConcurrentMap<?, ?>> map,
ConcurrentMap<?, Boolean> reverseMap) {
ConcurrentMap<?, ?> valuesMap = map.remove(this);
// remove also from reverseMap if needed
if (valuesMap != null) {
for (Object cacheValue : valuesMap.values()) {
reverseMap.remove(cacheValue);
}
}
}
}
}
java.lang. Comparable的compareTo
public interface Comparable<T> {
public int compareTo(T o);
}
java.lang. CharSequence
public interface CharSequence {
int length();
char charAt(int index);
CharSequence subSequence(int start, int end);
}
java.lang.String的主要方法
public final class String
implements java.io.Serializable, Comparable<String>, CharSequence {
private final char value[];
private int hash; // Default to 0
private static final long serialVersionUID = -6849794470754667710L;
private static final ObjectStreamField[] serialPersistentFields =
new ObjectStreamField[0];
public String() {
this.value = "".value;
}
public String(String original) {
this.value = original.value;
this.hash = original.hash;
}
public String(char value[]) {
this.value = Arrays.copyOf(value, value.length);
}
public String(char value[], int offset, int count) {
if (offset < 0) {
throw new StringIndexOutOfBoundsException(offset);
}
if (count <= 0) {
if (count < 0) {
throw new StringIndexOutOfBoundsException(count);
}
if (offset <= value.length) {
this.value = "".value;
return;
}
}
// Note: offset or count might be near -1>>>1.
if (offset > value.length - count) {
throw new StringIndexOutOfBoundsException(offset + count);
}
this.value = Arrays.copyOfRange(value, offset, offset+count);
}
public boolean isEmpty() {
return value.length == 0;
}
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = value.length;
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
Java.lang. Appendable
public interface Appendable {
Appendable append(CharSequence csq) throws IOException;
Appendable append(CharSequence csq, int start, int end) throws IOException;
Appendable append(char c) throws IOException;
}
java.lang. AbstractStringBuilder的主要方法
abstract class AbstractStringBuilder implements Appendable, CharSequence {
char[] value;
int count;
AbstractStringBuilder() {
}
AbstractStringBuilder(int capacity) {
value = new char[capacity];
}
@Override
public int length() {
return count;
}
public int capacity() {
return value.length;
}
@Override
public AbstractStringBuilder append(char c) {
ensureCapacityInternal(count + 1);
value[count++] = c;
return this;
}
private int newCapacity(int minCapacity) {
// overflow-conscious code
int newCapacity = (value.length << 1) + 2;
if (newCapacity - minCapacity < 0) {
newCapacity = minCapacity;
}
return (newCapacity <= 0 || MAX_ARRAY_SIZE - newCapacity < 0)
? hugeCapacity(minCapacity)
: newCapacity;
}
java.lang. StringBuilder的主要方法
public final class StringBuilder
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
{
static final long serialVersionUID = 4383685877147921099L;
public StringBuilder() {
super(16);
}
public StringBuilder(int capacity) {
super(capacity);
}
public StringBuilder(String str) {
super(str.length() + 16);
append(str);
}
public StringBuilder(CharSequence seq) {
this(seq.length() + 16);
append(seq);
}
@Override
public StringBuilder append(Object obj) {
return append(String.valueOf(obj));
}
@Override
public StringBuilder append(String str) {
super.append(str);
return this;
}
}
java.lang. StringBuffer的主要方法
public final class StringBuffer
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
{
private transient char[] toStringCache;
static final long serialVersionUID = 3388685877147921107L;
public StringBuffer() {
super(16);
}
public StringBuffer(int capacity) {
super(capacity);
}
public StringBuffer(String str) {
super(str.length() + 16);
append(str);
}
public StringBuffer(CharSequence seq) {
this(seq.length() + 16);
append(seq);
}
@Override
public synchronized int length() {
return count;
}
@Override
public synchronized int capacity() {
return value.length;
}
@Override
public synchronized void ensureCapacity(int minimumCapacity) {
super.ensureCapacity(minimumCapacity);
}
@Override
public synchronized void trimToSize() {
super.trimToSize();
}
@Override
public synchronized void setLength(int newLength) {
toStringCache = null;
super.setLength(newLength);
}
@Override
public synchronized char charAt(int index) {
if ((index < 0) || (index >= count))
throw new StringIndexOutOfBoundsException(index);
return value[index];
}
@Override
public synchronized int codePointAt(int index) {
return super.codePointAt(index);
}
@Override
public synchronized int codePointBefore(int index) {
return super.codePointBefore(index);
}
@Override
public synchronized int codePointCount(int beginIndex, int endIndex) {
return super.codePointCount(beginIndex, endIndex);
}
@Override
public synchronized int offsetByCodePoints(int index, int codePointOffset) {
return super.offsetByCodePoints(index, codePointOffset);
}
@Override
public synchronized void getChars(int srcBegin, int srcEnd, char[] dst,
int dstBegin)
{
super.getChars(srcBegin, srcEnd, dst, dstBegin);
}
@Override
public synchronized void setCharAt(int index, char ch) {
if ((index < 0) || (index >= count))
throw new StringIndexOutOfBoundsException(index);
toStringCache = null;
value[index] = ch;
}
@Override
public synchronized StringBuffer append(Object obj) {
toStringCache = null;
super.append(String.valueOf(obj));
return this;
}
@Override
public synchronized StringBuffer append(String str) {
toStringCache = null;
super.append(str);
return this;
}
public synchronized StringBuffer append(StringBuffer sb) {
toStringCache = null;
super.append(sb);
return this;
}
@Override
synchronized StringBuffer append(AbstractStringBuilder asb) {
toStringCache = null;
super.append(asb);
return this;
}
@Override
public synchronized StringBuffer append(CharSequence s) {
toStringCache = null;
super.append(s);
return this;
}
@Override
public synchronized StringBuffer append(CharSequence s, int start, int end)
{
toStringCache = null;
super.append(s, start, end);
return this;
}
@Override
public synchronized StringBuffer append(char[] str) {
toStringCache = null;
super.append(str);
return this;
}
java.io. DataInput
public interface DataInput {
void readFully(byte b[]) throws IOException;
void readFully(byte b[], int off, int len) throws IOException;
int skipBytes(int n) throws IOException;
boolean readBoolean() throws IOException;
byte readByte() throws IOException;
int readUnsignedByte() throws IOException;
short readShort() throws IOException;
int readUnsignedShort() throws IOException;
char readChar() throws IOException;
int readInt() throws IOException;
long readLong() throws IOException;
float readFloat() throws IOException;
double readDouble() throws IOException;
String readLine() throws IOException;
String readUTF() throws IOException;
}
java.io. ObjectInput
public interface ObjectInput extends DataInput, AutoCloseable {
public Object readObject()
throws ClassNotFoundException, IOException;
public int read() throws IOException;
public int read(byte b[]) throws IOException;
public int read(byte b[], int off, int len) throws IOException;
public long skip(long n) throws IOException;
public int available() throws IOException;
public void close() throws IOException;
}
java.io. DataOutput
public interface DataOutput {
void write(int b) throws IOException;
void write(byte b[]) throws IOException;
void write(byte b[], int off, int len) throws IOException;
void writeBoolean(boolean v) throws IOException;
void writeByte(int v) throws IOException;
void writeShort(int v) throws IOException;
void writeChar(int v) throws IOException;
void writeInt(int v) throws IOException;
void writeLong(long v) throws IOException;
void writeFloat(float v) throws IOException;
void writeDouble(double v) throws IOException;
void writeBytes(String s) throws IOException;
void writeChars(String s) throws IOException;
void writeUTF(String s) throws IOException;
}
java.io. ObjectOutput
public interface ObjectOutput extends DataOutput, AutoCloseable {
public void writeObject(Object obj)
throws IOException;
public void write(int b) throws IOException;
public void write(byte b[]) throws IOException;
public void write(byte b[], int off, int len) throws IOException;
public void flush() throws IOException;
public void close() throws IOException;
}
java.lang. AutoCloseable
public interface AutoCloseable {
void close() throws Exception;
}
java.io. FilterInputStream
public class FilterInputStream extends InputStream {
protected volatile InputStream in;
protected FilterInputStream(InputStream in) {
this.in = in;
}
public int read() throws IOException {
return in.read();
}
public int read(byte b[]) throws IOException {
return read(b, 0, b.length);
}
public int read(byte b[], int off, int len) throws IOException {
return in.read(b, off, len);
}
public long skip(long n) throws IOException {
return in.skip(n);
}
public int available() throws IOException {
return in.available();
}
public void close() throws IOException {
in.close();
}
public synchronized void mark(int readlimit) {
in.mark(readlimit);
}
public synchronized void reset() throws IOException {
in.reset();
}
public boolean markSupported() {
return in.markSupported();
}
}
java.io. DataInputStream
public class DataInputStream extends FilterInputStream implements DataInput {
public DataInputStream(InputStream in) {
super(in);
}
private byte bytearr[] = new byte[80];
private char chararr[] = new char[80];
public final int read(byte b[]) throws IOException {
return in.read(b, 0, b.length);
}
public final int read(byte b[], int off, int len) throws IOException {
return in.read(b, off, len);
}
public final void readFully(byte b[]) throws IOException {
readFully(b, 0, b.length);
}
public final void readFully(byte b[], int off, int len) throws IOException {
if (len < 0)
throw new IndexOutOfBoundsException();
int n = 0;
while (n < len) {
int count = in.read(b, off + n, len - n);
if (count < 0)
throw new EOFException();
n += count;
}
}
public final int skipBytes(int n) throws IOException {
int total = 0;
int cur = 0;
while ((total<n) && ((cur = (int) in.skip(n-total)) > 0)) {
total += cur;
}
return total;
}
public final boolean readBoolean() throws IOException {
int ch = in.read();
if (ch < 0)
throw new EOFException();
return (ch != 0);
}
public final byte readByte() throws IOException {
int ch = in.read();
if (ch < 0)
throw new EOFException();
return (byte)(ch);
}
public final int readUnsignedByte() throws IOException {
int ch = in.read();
if (ch < 0)
throw new EOFException();
return ch;
}
public final short readShort() throws IOException {
int ch1 = in.read();
int ch2 = in.read();
if ((ch1 | ch2) < 0)
throw new EOFException();
return (short)((ch1 << 8) + (ch2 << 0));
}
public final int readUnsignedShort() throws IOException {
int ch1 = in.read();
int ch2 = in.read();
if ((ch1 | ch2) < 0)
throw new EOFException();
return (ch1 << 8) + (ch2 << 0);
}
public final char readChar() throws IOException {
int ch1 = in.read();
int ch2 = in.read();
if ((ch1 | ch2) < 0)
throw new EOFException();
return (char)((ch1 << 8) + (ch2 << 0));
}
public final int readInt() throws IOException {
int ch1 = in.read();
int ch2 = in.read();
int ch3 = in.read();
int ch4 = in.read();
if ((ch1 | ch2 | ch3 | ch4) < 0)
throw new EOFException();
return ((ch1 << 24) + (ch2 << 16) + (ch3 << 8) + (ch4 << 0));
}
private byte readBuffer[] = new byte[8];
public final long readLong() throws IOException {
readFully(readBuffer, 0, 8);
return (((long)readBuffer[0] << 56) +
((long)(readBuffer[1] & 255) << 48) +
((long)(readBuffer[2] & 255) << 40) +
((long)(readBuffer[3] & 255) << 32) +
((long)(readBuffer[4] & 255) << 24) +
((readBuffer[5] & 255) << 16) +
((readBuffer[6] & 255) << 8) +
((readBuffer[7] & 255) << 0));
}
public final float readFloat() throws IOException {
return Float.intBitsToFloat(readInt());
}
public final double readDouble() throws IOException {
return Double.longBitsToDouble(readLong());
}
private char lineBuffer[];
@Deprecated
public final String readLine() throws IOException {
char buf[] = lineBuffer;
if (buf == null) {
buf = lineBuffer = new char[128];
}
int room = buf.length;
int offset = 0;
int c;
loop: while (true) {
switch (c = in.read()) {
case -1:
case '\n':
break loop;
case '\r':
int c2 = in.read();
if ((c2 != '\n') && (c2 != -1)) {
if (!(in instanceof PushbackInputStream)) {
this.in = new PushbackInputStream(in);
}
((PushbackInputStream)in).unread(c2);
}
break loop;
default:
if (--room < 0) {
buf = new char[offset + 128];
room = buf.length - offset - 1;
System.arraycopy(lineBuffer, 0, buf, 0, offset);
lineBuffer = buf;
}
buf[offset++] = (char) c;
break;
}
}
if ((c == -1) && (offset == 0)) {
return null;
}
return String.copyValueOf(buf, 0, offset);
}
public final String readUTF() throws IOException {
return readUTF(this);
}
public final static String readUTF(DataInput in) throws IOException {
int utflen = in.readUnsignedShort();
byte[] bytearr = null;
char[] chararr = null;
if (in instanceof DataInputStream) {
DataInputStream dis = (DataInputStream)in;
if (dis.bytearr.length < utflen){
dis.bytearr = new byte[utflen*2];
dis.chararr = new char[utflen*2];
}
chararr = dis.chararr;
bytearr = dis.bytearr;
} else {
bytearr = new byte[utflen];
chararr = new char[utflen];
}
int c, char2, char3;
int count = 0;
int chararr_count=0;
in.readFully(bytearr, 0, utflen);
while (count < utflen) {
c = (int) bytearr[count] & 0xff;
if (c > 127) break;
count++;
chararr[chararr_count++]=(char)c;
}
while (count < utflen) {
c = (int) bytearr[count] & 0xff;
switch (c >> 4) {
case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7:
/* 0xxxxxxx*/
count++;
chararr[chararr_count++]=(char)c;
break;
case 12: case 13:
/* 110x xxxx 10xx xxxx*/
count += 2;
if (count > utflen)
throw new UTFDataFormatException(
"malformed input: partial character at end");
char2 = (int) bytearr[count-1];
if ((char2 & 0xC0) != 0x80)
throw new UTFDataFormatException(
"malformed input around byte " + count);
chararr[chararr_count++]=(char)(((c & 0x1F) << 6) |
(char2 & 0x3F));
break;
case 14:
/* 1110 xxxx 10xx xxxx 10xx xxxx */
count += 3;
if (count > utflen)
throw new UTFDataFormatException(
"malformed input: partial character at end");
char2 = (int) bytearr[count-2];
char3 = (int) bytearr[count-1];
if (((char2 & 0xC0) != 0x80) || ((char3 & 0xC0) != 0x80))
throw new UTFDataFormatException(
"malformed input around byte " + (count-1));
chararr[chararr_count++]=(char)(((c & 0x0F) << 12) |
((char2 & 0x3F) << 6) |
((char3 & 0x3F) << 0));
break;
default:
/* 10xx xxxx, 1111 xxxx */
throw new UTFDataFormatException(
"malformed input around byte " + count);
}
}
// The number of chars produced may be less than utflen
return new String(chararr, 0, chararr_count);
}
}
java.io. SocketInputStream
class SocketInputStream extends FileInputStream
{
static {
init();
}
private boolean eof;
private AbstractPlainSocketImpl impl = null;
private byte temp[];
private Socket socket = null;
private native int socketRead0(FileDescriptor fd,
byte b[], int off, int len,
int timeout)
throws IOException;
private int socketRead(FileDescriptor fd,
byte b[], int off, int len,
int timeout)
throws IOException {
return socketRead0(fd, b, off, len, timeout);
}
public int read(byte b[]) throws IOException {
return read(b, 0, b.length);
}
public int read(byte b[], int off, int length) throws IOException {
return read(b, off, length, impl.getTimeout());
}
int read(byte b[], int off, int length, int timeout) throws IOException {
int n;
// EOF already encountered
if (eof) {
return -1;
}
if (impl.isConnectionReset()) {
throw new SocketException("Connection reset");
}
if (length <= 0 || off < 0 || length > b.length - off) {
if (length == 0) {
return 0;
}
throw new ArrayIndexOutOfBoundsException("length == " + length
+ " off == " + off + " buffer length == " + b.length);
}
boolean gotReset = false;
FileDescriptor fd = impl.acquireFD();
try {
n = socketRead(fd, b, off, length, timeout);
if (n > 0) {
return n;
}
} catch (ConnectionResetException rstExc) {
gotReset = true;
} finally {
impl.releaseFD();
}
java.io. ObjectOutputStream
public class ObjectOutputStream
extends OutputStream implements ObjectOutput, ObjectStreamConstants
{
private static class Caches {
/** cache of subclass security audit results */
static final ConcurrentMap<WeakClassKey,Boolean> subclassAudits =
new ConcurrentHashMap<>();
/** queue for WeakReferences to audited subclasses */
static final ReferenceQueue<Class<?>> subclassAuditsQueue =
new ReferenceQueue<>();
}
/** filter stream for handling block data conversion */
private final BlockDataOutputStream bout;
/** obj -> wire handle map */
private final HandleTable handles;
/** obj -> replacement obj map */
private final ReplaceTable subs;
/** stream protocol version */
private int protocol = PROTOCOL_VERSION_2;
/** recursion depth */
private int depth;
/** buffer for writing primitive field values */
private byte[] primVals;
/** if true, invoke writeObjectOverride() instead of writeObject() */
private final boolean enableOverride;
/** if true, invoke replaceObject() */
private boolean enableReplace;
private SerialCallbackContext curContext;
/** current PutField object */
private PutFieldImpl curPut;
private final DebugTraceInfoStack debugInfoStack;
private static final boolean extendedDebugInfo =
java.security.AccessController.doPrivileged(
new sun.security.action.GetBooleanAction(
"sun.io.serialization.extendedDebugInfo")).booleanValue();
public ObjectOutputStream(OutputStream out) throws IOException {
verifySubclass();
bout = new BlockDataOutputStream(out);
handles = new HandleTable(10, (float) 3.00);
subs = new ReplaceTable(10, (float) 3.00);
enableOverride = false;
writeStreamHeader();
bout.setBlockDataMode(true);
if (extendedDebugInfo) {
debugInfoStack = new DebugTraceInfoStack();
} else {
debugInfoStack = null;
}
}
java.io. ObjectOutputStream. BlockDataOutputStream
private static class BlockDataOutputStream
extends OutputStream implements DataOutput
{
/** maximum data block length */
private static final int MAX_BLOCK_SIZE = 1024;
/** maximum data block header length */
private static final int MAX_HEADER_SIZE = 5;
/** (tunable) length of char buffer (for writing strings) */
private static final int CHAR_BUF_SIZE = 256;
/** buffer for writing general/block data */
private final byte[] buf = new byte[MAX_BLOCK_SIZE];
/** buffer for writing block data headers */
private final byte[] hbuf = new byte[MAX_HEADER_SIZE];
/** char buffer for fast string writes */
private final char[] cbuf = new char[CHAR_BUF_SIZE];
/** block data mode */
private boolean blkmode = false;
/** current offset into buf */
private int pos = 0;
/** underlying output stream */
private final OutputStream out;
/** loopback stream (for data writes that span data blocks) */
private final DataOutputStream dout;
BlockDataOutputStream(OutputStream out) {
this.out = out;
dout = new DataOutputStream(this);
}
boolean setBlockDataMode(boolean mode) throws IOException {
if (blkmode == mode) {
return blkmode;
}
drain();
blkmode = mode;
return !blkmode;
}
boolean getBlockDataMode() {
return blkmode;
}
public void write(int b) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
buf[pos++] = (byte) b;
}
public void write(byte[] b) throws IOException {
write(b, 0, b.length, false);
}
public void write(byte[] b, int off, int len) throws IOException {
write(b, off, len, false);
}
public void flush() throws IOException {
drain();
out.flush();
}
public void close() throws IOException {
flush();
out.close();
}
void write(byte[] b, int off, int len, boolean copy)
throws IOException
{
if (!(copy || blkmode)) { // write directly
drain();
out.write(b, off, len);
return;
}
while (len > 0) {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
if (len >= MAX_BLOCK_SIZE && !copy && pos == 0) {
// avoid unnecessary copy
writeBlockHeader(MAX_BLOCK_SIZE);
out.write(b, off, MAX_BLOCK_SIZE);
off += MAX_BLOCK_SIZE;
len -= MAX_BLOCK_SIZE;
} else {
int wlen = Math.min(len, MAX_BLOCK_SIZE - pos);
System.arraycopy(b, off, buf, pos, wlen);
pos += wlen;
off += wlen;
len -= wlen;
}
}
}
void drain() throws IOException {
if (pos == 0) {
return;
}
if (blkmode) {
writeBlockHeader(pos);
}
out.write(buf, 0, pos);
pos = 0;
}
private void writeBlockHeader(int len) throws IOException {
if (len <= 0xFF) {
hbuf[0] = TC_BLOCKDATA;
hbuf[1] = (byte) len;
out.write(hbuf, 0, 2);
} else {
hbuf[0] = TC_BLOCKDATALONG;
Bits.putInt(hbuf, 1, len);
out.write(hbuf, 0, 5);
}
}
public void writeBoolean(boolean v) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
Bits.putBoolean(buf, pos++, v);
}
public void writeByte(int v) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
buf[pos++] = (byte) v;
}
public void writeChar(int v) throws IOException {
if (pos + 2 <= MAX_BLOCK_SIZE) {
Bits.putChar(buf, pos, (char) v);
pos += 2;
} else {
dout.writeChar(v);
}
}
public void writeShort(int v) throws IOException {
if (pos + 2 <= MAX_BLOCK_SIZE) {
Bits.putShort(buf, pos, (short) v);
pos += 2;
} else {
dout.writeShort(v);
}
}
public void writeInt(int v) throws IOException {
if (pos + 4 <= MAX_BLOCK_SIZE) {
Bits.putInt(buf, pos, v);
pos += 4;
} else {
dout.writeInt(v);
}
}
public void writeFloat(float v) throws IOException {
if (pos + 4 <= MAX_BLOCK_SIZE) {
Bits.putFloat(buf, pos, v);
pos += 4;
} else {
dout.writeFloat(v);
}
}
public void writeLong(long v) throws IOException {
if (pos + 8 <= MAX_BLOCK_SIZE) {
Bits.putLong(buf, pos, v);
pos += 8;
} else {
dout.writeLong(v);
}
}
public void writeDouble(double v) throws IOException {
if (pos + 8 <= MAX_BLOCK_SIZE) {
Bits.putDouble(buf, pos, v);
pos += 8;
} else {
dout.writeDouble(v);
}
}
public void writeBytes(String s) throws IOException {
int endoff = s.length();
int cpos = 0;
int csize = 0;
for (int off = 0; off < endoff; ) {
if (cpos >= csize) {
cpos = 0;
csize = Math.min(endoff - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
}
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
int n = Math.min(csize - cpos, MAX_BLOCK_SIZE - pos);
int stop = pos + n;
while (pos < stop) {
buf[pos++] = (byte) cbuf[cpos++];
}
off += n;
}
}
public void writeChars(String s) throws IOException {
int endoff = s.length();
for (int off = 0; off < endoff; ) {
int csize = Math.min(endoff - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
writeChars(cbuf, 0, csize);
off += csize;
}
}
public void writeUTF(String s) throws IOException {
writeUTF(s, getUTFLength(s));
}
void writeBooleans(boolean[] v, int off, int len) throws IOException {
int endoff = off + len;
while (off < endoff) {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
int stop = Math.min(endoff, off + (MAX_BLOCK_SIZE - pos));
while (off < stop) {
Bits.putBoolean(buf, pos++, v[off++]);
}
}
}
void writeChars(char[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 2;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 1;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putChar(buf, pos, v[off++]);
pos += 2;
}
} else {
dout.writeChar(v[off++]);
}
}
}
void writeShorts(short[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 2;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 1;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putShort(buf, pos, v[off++]);
pos += 2;
}
} else {
dout.writeShort(v[off++]);
}
}
}
void writeInts(int[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 4;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 2;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putInt(buf, pos, v[off++]);
pos += 4;
}
} else {
dout.writeInt(v[off++]);
}
}
}
void writeFloats(float[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 4;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 2;
int chunklen = Math.min(endoff - off, avail);
floatsToBytes(v, off, buf, pos, chunklen);
off += chunklen;
pos += chunklen << 2;
} else {
dout.writeFloat(v[off++]);
}
}
}
void writeLongs(long[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 8;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 3;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putLong(buf, pos, v[off++]);
pos += 8;
}
} else {
dout.writeLong(v[off++]);
}
}
}
void writeDoubles(double[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 8;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 3;
int chunklen = Math.min(endoff - off, avail);
doublesToBytes(v, off, buf, pos, chunklen);
off += chunklen;
pos += chunklen << 3;
} else {
dout.writeDouble(v[off++]);
}
}
}
long getUTFLength(String s) {
int len = s.length();
long utflen = 0;
for (int off = 0; off < len; ) {
int csize = Math.min(len - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
for (int cpos = 0; cpos < csize; cpos++) {
char c = cbuf[cpos];
if (c >= 0x0001 && c <= 0x007F) {
utflen++;
} else if (c > 0x07FF) {
utflen += 3;
} else {
utflen += 2;
}
}
off += csize;
}
return utflen;
}
void writeUTF(String s, long utflen) throws IOException {
if (utflen > 0xFFFFL) {
throw new UTFDataFormatException();
}
writeShort((int) utflen);
if (utflen == (long) s.length()) {
writeBytes(s);
} else {
writeUTFBody(s);
}
}
void writeLongUTF(String s) throws IOException {
writeLongUTF(s, getUTFLength(s));
}
/**
* Writes given string in "long" UTF format, where the UTF encoding
* length of the string is already known.
*/
void writeLongUTF(String s, long utflen) throws IOException {
writeLong(utflen);
if (utflen == (long) s.length()) {
writeBytes(s);
} else {
writeUTFBody(s);
}
}
private void writeUTFBody(String s) throws IOException {
int limit = MAX_BLOCK_SIZE - 3;
int len = s.length();
for (int off = 0; off < len; ) {
int csize = Math.min(len - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
for (int cpos = 0; cpos < csize; cpos++) {
char c = cbuf[cpos];
if (pos <= limit) {
if (c <= 0x007F && c != 0) {
buf[pos++] = (byte) c;
} else if (c > 0x07FF) {
buf[pos + 2] = (byte) (0x80 | ((c >> 0) & 0x3F));
buf[pos + 1] = (byte) (0x80 | ((c >> 6) & 0x3F));
buf[pos + 0] = (byte) (0xE0 | ((c >> 12) & 0x0F));
pos += 3;
} else {
buf[pos + 1] = (byte) (0x80 | ((c >> 0) & 0x3F));
buf[pos + 0] = (byte) (0xC0 | ((c >> 6) & 0x1F));
pos += 2;
}
} else { // write one byte at a time to normalize block
if (c <= 0x007F && c != 0) {
write(c);
} else if (c > 0x07FF) {
write(0xE0 | ((c >> 12) & 0x0F));
write(0x80 | ((c >> 6) & 0x3F));
write(0x80 | ((c >> 0) & 0x3F));
} else {
write(0xC0 | ((c >> 6) & 0x1F));
write(0x80 | ((c >> 0) & 0x3F));
}
}
}
off += csize;
}
}
java.io.File
public class File implements Serializable, Comparable<File>{
private static final FileSystem fs = DefaultFileSystem.getFileSystem();
private final String path;
public File(String pathname) {
if (pathname == null) {
throw new NullPointerException();
}
this.path = fs.normalize(pathname);
this.prefixLength = fs.prefixLength(this.path);
}
}
java.io. FileDescriptor
‘
public final class FileDescriptor {
private int fd;
private long handle;
private Closeable parent;
private List<Closeable> otherParents;
private boolean closed;
/**
* Constructs an (invalid) FileDescriptor
* object.
*/
public /**/ FileDescriptor() {
fd = -1;
handle = -1;
}
static {
initIDs();
}
private static native void initIDs();
private static native long set(int d);
}
java.io. FileSystem
abstract class FileSystem {
public abstract char getSeparator();
public abstract char getPathSeparator();
public abstract String normalize(String path);
public abstract int prefixLength(String path);
public abstract String resolve(String parent, String child);
public abstract String getDefaultParent();
public abstract String fromURIPath(String path);
public abstract boolean isAbsolute(File f);
public abstract String resolve(File f);
public abstract String canonicalize(String path) throws IOException;
@Native public static final int BA_EXISTS = 0x01;
@Native public static final int BA_REGULAR = 0x02;
@Native public static final int BA_DIRECTORY = 0x04;
@Native public static final int BA_HIDDEN = 0x08;
public abstract int getBooleanAttributes(File f);
@Native public static final int ACCESS_READ = 0x04;
@Native public static final int ACCESS_WRITE = 0x02;
@Native public static final int ACCESS_EXECUTE = 0x01;
public abstract boolean checkAccess(File f, int access);
public abstract boolean setPermission(File f, int access, boolean enable, boolean owneronly);
public abstract long getLastModifiedTime(File f);
public abstract long getLength(File f);
public abstract boolean createFileExclusively(String pathname)
throws IOException;
public abstract boolean delete(File f);
public abstract String[] list(File f);
}
java.io. DefaultFileSystem
class DefaultFileSystem {
public static FileSystem getFileSystem() {
return new WinNTFileSystem();
}
}
java.io. WinNTFileSystem
class WinNTFileSystem extends FileSystem {
private final char slash;
private final char altSlash;
private final char semicolon;
public WinNTFileSystem() {
slash = AccessController.doPrivileged(
new GetPropertyAction("file.separator")).charAt(0);
semicolon = AccessController.doPrivileged(
new GetPropertyAction("path.separator")).charAt(0);
altSlash = (this.slash == '\\') ? '/' : '\\';
}
@Override
public native boolean setPermission(File f, int access, boolean enable,
boolean owneronly);
@Override
public native boolean createFileExclusively(String path)
throws IOException;
@Override
public native String[] list(File f);
@Override
public native boolean createDirectory(File f);
@Override
public native boolean setLastModifiedTime(File f, long time);
@Override
public native boolean setReadOnly(File f);
@Override
public boolean delete(File f) {
cache.clear();
prefixCache.clear();
return delete0(f);
}
private native boolean delete0(File f);
@Override
public boolean rename(File f1, File f2) {
cache.clear();
prefixCache.clear();
return rename0(f1, f2);
}
private native boolean rename0(File f1, File f2);
}
java.io. FileOutputStream
public
class FileOutputStream extends OutputStream
{
private final FileDescriptor fd;
private final boolean append;
private FileChannel channel;
private final String path;
private final Object closeLock = new Object();
private volatile boolean closed = false;
public FileOutputStream(String name) throws FileNotFoundException {
this(name != null ? new File(name) : null, false);
}
public FileOutputStream(String name, boolean append)
throws FileNotFoundException
{
this(name != null ? new File(name) : null, append);
}
public FileOutputStream(File file) throws FileNotFoundException {
this(file, false);
}
public FileOutputStream(File file, boolean append)
throws FileNotFoundException
{
String name = (file != null ? file.getPath() : null);
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkWrite(name);
}
if (name == null) {
throw new NullPointerException();
}
if (file.isInvalid()) {
throw new FileNotFoundException("Invalid file path");
}
this.fd = new FileDescriptor();
fd.attach(this);
this.append = append;
this.path = name;
open(name, append);
}
private void open(String name, boolean append)
throws FileNotFoundException {
open0(name, append);
}
private native void open0(String name, boolean append)
throws FileNotFoundException;
}
java.io.Closeable
public interface Closeable extends AutoCloseable {
public void close() throws IOException;
}
java.net. SocketOptions
public interface SocketOptions {
public void setOption(int optID, Object value) throws SocketException;
public Object getOption(int optID) throws SocketException;
@Native public final static int TCP_NODELAY = 0x0001;
@Native public final static int SO_BINDADDR = 0x000F;
@Native public final static int SO_REUSEADDR = 0x04;
@Native public final static int SO_BROADCAST = 0x0020;
@Native public final static int IP_MULTICAST_IF = 0x10;
@Native public final static int IP_MULTICAST_IF2 = 0x1f;
@Native public final static int IP_MULTICAST_LOOP = 0x12;
@Native public final static int IP_TOS = 0x3;
@Native public final static int SO_LINGER = 0x0080;
@Native public final static int SO_TIMEOUT = 0x1006;
@Native public final static int SO_SNDBUF = 0x1001;
@Native public final static int SO_RCVBUF = 0x1002;
@Native public final static int SO_KEEPALIVE = 0x0008;
@Native public final static int SO_OOBINLINE = 0x1003;
}
java.net. SocketImpl
public abstract class SocketImpl implements SocketOptions {
Socket socket = null;
ServerSocket serverSocket = null;
protected FileDescriptor fd;
protected InetAddress address;
protected int port;
protected int localport;
protected abstract void create(boolean stream) throws IOException;
protected abstract void connect(String host, int port) throws IOException;
protected abstract void connect(InetAddress address, int port) throws IOException;
protected abstract void connect(SocketAddress address, int timeout) throws IOException;
protected abstract void bind(InetAddress host, int port) throws IOException;
protected abstract void listen(int backlog) throws IOException;
protected abstract void accept(SocketImpl s) throws IOException;
protected abstract InputStream getInputStream() throws IOException;
protected abstract OutputStream getOutputStream() throws IOException;
protected abstract int available() throws IOException;
protected abstract void close() throws IOException;
protected void shutdownInput() throws IOException {
throw new IOException("Method not implemented!");
}
protected void shutdownOutput() throws IOException {
throw new IOException("Method not implemented!");
}
protected FileDescriptor getFileDescriptor() {
return fd;
}
protected InetAddress getInetAddress() {
return address;
}
protected int getPort() {
return port;
}
protected boolean supportsUrgentData () {
return false; // must be overridden in sub-class
}
protected abstract void sendUrgentData (int data) throws IOException;
protected int getLocalPort() {
return localport;
}
void setSocket(Socket soc) {
this.socket = soc;
}
Socket getSocket() {
return socket;
}
void setServerSocket(ServerSocket soc) {
this.serverSocket = soc;
}
ServerSocket getServerSocket() {
return serverSocket;
}
public String toString() {
return "Socket[addr=" + getInetAddress() +
",port=" + getPort() + ",localport=" + getLocalPort() + "]";
}
void reset() throws IOException {
address = null;
port = 0;
localport = 0;
}
protected void setPerformancePreferences(int connectionTime,
int latency,
int bandwidth)
{
/* Not implemented yet */
}
<T> void setOption(SocketOption<T> name, T value) throws IOException {
if (name == StandardSocketOptions.SO_KEEPALIVE) {
setOption(SocketOptions.SO_KEEPALIVE, value);
} else if (name == StandardSocketOptions.SO_SNDBUF) {
setOption(SocketOptions.SO_SNDBUF, value);
} else if (name == StandardSocketOptions.SO_RCVBUF) {
setOption(SocketOptions.SO_RCVBUF, value);
} else if (name == StandardSocketOptions.SO_REUSEADDR) {
setOption(SocketOptions.SO_REUSEADDR, value);
} else if (name == StandardSocketOptions.SO_LINGER) {
setOption(SocketOptions.SO_LINGER, value);
} else if (name == StandardSocketOptions.IP_TOS) {
setOption(SocketOptions.IP_TOS, value);
} else if (name == StandardSocketOptions.TCP_NODELAY) {
setOption(SocketOptions.TCP_NODELAY, value);
} else {
throw new UnsupportedOperationException("unsupported option");
}
}
<T> T getOption(SocketOption<T> name) throws IOException {
if (name == StandardSocketOptions.SO_KEEPALIVE) {
return (T)getOption(SocketOptions.SO_KEEPALIVE);
} else if (name == StandardSocketOptions.SO_SNDBUF) {
return (T)getOption(SocketOptions.SO_SNDBUF);
} else if (name == StandardSocketOptions.SO_RCVBUF) {
return (T)getOption(SocketOptions.SO_RCVBUF);
} else if (name == StandardSocketOptions.SO_REUSEADDR) {
return (T)getOption(SocketOptions.SO_REUSEADDR);
} else if (name == StandardSocketOptions.SO_LINGER) {
return (T)getOption(SocketOptions.SO_LINGER);
} else if (name == StandardSocketOptions.IP_TOS) {
return (T)getOption(SocketOptions.IP_TOS);
} else if (name == StandardSocketOptions.TCP_NODELAY) {
return (T)getOption(SocketOptions.TCP_NODELAY);
} else {
throw new UnsupportedOperationException("unsupported option");
}
}
}
java.net. AbstractPlainSocketImpl
abstract class AbstractPlainSocketImpl extends SocketImpl{
protected void accept(SocketImpl s) throws IOException {
acquireFD();
try {
socketAccept(s);
} finally {
releaseFD();
}
}
protected synchronized InputStream getInputStream() throws IOException {
synchronized (fdLock) {
if (isClosedOrPending())
throw new IOException("Socket Closed");
if (shut_rd)
throw new IOException("Socket input is shutdown");
if (socketInputStream == null)
socketInputStream = new SocketInputStream(this);
}
return socketInputStream;
}
void setInputStream(SocketInputStream in) {
socketInputStream = in;
}
protected synchronized OutputStream getOutputStream() throws IOException {
synchronized (fdLock) {
if (isClosedOrPending())
throw new IOException("Socket Closed");
if (shut_wr)
throw new IOException("Socket output is shutdown");
if (socketOutputStream == null)
socketOutputStream = new SocketOutputStream(this);
}
return socketOutputStream;
}
}
java.net. Socket
public class Socket implements java.io.Closeable {
public Socket() {
setImpl();
}
void setImpl() {
if (factory != null) {
impl = factory.createSocketImpl();
checkOldImpl();
} else {
impl = new SocksSocketImpl();
}
if (impl != null)
impl.setSocket(this);
}
}
public void connect(SocketAddress endpoint, int timeout) throws IOException {
if (endpoint == null)
throw new IllegalArgumentException("connect: The address can't be null");
if (timeout < 0)
throw new IllegalArgumentException("connect: timeout can't be negative");
if (isClosed())
throw new SocketException("Socket is closed");
if (!oldImpl && isConnected())
throw new SocketException("already connected");
if (!(endpoint instanceof InetSocketAddress))
throw new IllegalArgumentException("Unsupported address type");
InetSocketAddress epoint = (InetSocketAddress) endpoint;
InetAddress addr = epoint.getAddress ();
int port = epoint.getPort();
checkAddress(addr, "connect");
SecurityManager security = System.getSecurityManager();
if (security != null) {
if (epoint.isUnresolved())
security.checkConnect(epoint.getHostName(), port);
else
security.checkConnect(addr.getHostAddress(), port);
}
if (!created)
createImpl(true);
if (!oldImpl)
impl.connect(epoint, timeout);
else if (timeout == 0) {
if (epoint.isUnresolved())
impl.connect(addr.getHostName(), port);
else
impl.connect(addr, port);
} else
throw new UnsupportedOperationException("SocketImpl.connect(addr, timeout)");
connected = true;
bound = true;
}
public InputStream getInputStream() throws IOException {
if (isClosed())
throw new SocketException("Socket is closed");
if (!isConnected())
throw new SocketException("Socket is not connected");
if (isInputShutdown())
throw new SocketException("Socket input is shutdown");
final Socket s = this;
InputStream is = null;
try {
is = AccessController.doPrivileged(
new PrivilegedExceptionAction<InputStream>() {
public InputStream run() throws IOException {
return impl.getInputStream();
}
});
} catch (java.security.PrivilegedActionException e) {
throw (IOException) e.getException();
}
return is;
}
public OutputStream getOutputStream() throws IOException {
if (isClosed())
throw new SocketException("Socket is closed");
if (!isConnected())
throw new SocketException("Socket is not connected");
if (isOutputShutdown())
throw new SocketException("Socket output is shutdown");
final Socket s = this;
OutputStream os = null;
try {
os = AccessController.doPrivileged(
new PrivilegedExceptionAction<OutputStream>() {
public OutputStream run() throws IOException {
return impl.getOutputStream();
}
});
} catch (java.security.PrivilegedActionException e) {
throw (IOException) e.getException();
}
return os;
}
java.net. ServerSocket
public class ServerSocket implements java.io.Closeable {
public Socket accept() throws IOException {
if (isClosed())
throw new SocketException("Socket is closed");
if (!isBound())
throw new SocketException("Socket is not bound yet");
Socket s = new Socket((SocketImpl) null);
implAccept(s);
return s;
}
protected final void implAccept(Socket s) throws IOException {
SocketImpl si = null;
try {
if (s.impl == null)
s.setImpl();
else {
s.impl.reset();
}
si = s.impl;
s.impl = null;
si.address = new InetAddress();
si.fd = new FileDescriptor();
getImpl().accept(si);
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkAccept(si.getInetAddress().getHostAddress(),
si.getPort());
}
} catch (IOException e) {
if (si != null)
si.reset();
s.impl = si;
throw e;
} catch (SecurityException e) {
if (si != null)
si.reset();
s.impl = si;
throw e;
}
s.impl = si;
s.postAccept();
}
}
java.net. proxy
public class Proxy {
/**
* Represents the proxy type.
*
* @since 1.5
*/
public enum Type {
/**
* Represents a direct connection, or the absence of a proxy.
*/
DIRECT,
/**
* Represents proxy for high level protocols such as HTTP or FTP.
*/
HTTP,
/**
* Represents a SOCKS (V4 or V5) proxy.
*/
SOCKS
};
private Type type;
private SocketAddress sa;
public final static Proxy NO_PROXY = new Proxy();
// Creates the proxy that represents a {@code DIRECT} connection.
private Proxy() {
type = Type.DIRECT;
sa = null;
}
public Proxy(Type type, SocketAddress sa) {
if ((type == Type.DIRECT) || !(sa instanceof InetSocketAddress))
throw new IllegalArgumentException("type " + type + " is not compatible with address " + sa);
this.type = type;
this.sa = sa;
}
}
nio demo
public class ServerConnect
{
public static void main(String[] args)
{
selector();
}
public static void handleAccept(SelectionKey key) throws IOException{
ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
SocketChannel sc = ssChannel.accept();
sc.configureBlocking(false);
sc.register(key.selector(), SelectionKey.OP_READ,ByteBuffer.allocateDirect(1024));
}
public static void handleRead(SelectionKey key) throws IOException{
SocketChannel sc = (SocketChannel)key.channel();
ByteBuffer buf = (ByteBuffer)key.attachment();
long bytesRead = sc.read(buf);
while(bytesRead>0){
buf.flip();
while(buf.hasRemaining()){
System.out.print((char)buf.get());
}
buf.clear();
bytesRead = sc.read(buf);
}
if(bytesRead == -1){
sc.close();
}
}
public static void handleWrite(SelectionKey key) throws IOException{
ByteBuffer buf = (ByteBuffer)key.attachment();
buf.flip();
SocketChannel sc = (SocketChannel) key.channel();
while(buf.hasRemaining()){
sc.write(buf);
}
buf.compact();
}
public static void selector() {
Selector selector = null;
ServerSocketChannel ssc = null;
try{
selector = Selector.open();
ssc= ServerSocketChannel.open();
ssc.socket().bind(new InetSocketAddress(8080));
ssc.configureBlocking(false);
ssc.register(selector, SelectionKey.OP_ACCEPT);
while(true){
if(selector.select(3000) == 0){
continue;
}
Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
while(iter.hasNext()){
SelectionKey key = iter.next();
if(key.isAcceptable()){
handleAccept(key);
}
if(key.isReadable()){
handleRead(key);
}
if(key.isWritable() && key.isValid()){
handleWrite(key);
}
if(key.isConnectable()){
System.out.println("isConnectable = true");
}
iter.remove();
}
}
}catch(IOException e){
e.printStackTrace();
}finally{
try{
if(selector!=null){
selector.close();
}
if(ssc!=null){
ssc.close();
}
}catch(IOException e){
e.printStackTrace();
}
}
}
}
java.nio.channels.Channel
public interface Channel extends Closeable {
public boolean isOpen();
public void close() throws IOException;
}
java.nio.channels. SelectableChannel
public abstract class SelectableChannel extends AbstractInterruptibleChannel implements Channel{
protected SelectableChannel() { }
public abstract SelectorProvider provider();
public abstract SelectionKey register(Selector sel, int ops, Object att)
throws ClosedChannelException;
}
java.nio.channels. AbstractSelectableChannel
public abstract class AbstractSelectableChannel
extends SelectableChannel
{
private final SelectorProvider provider;
private SelectionKey[] keys = null;
public final SelectionKey register(Selector sel, int ops,
Object att)
throws ClosedChannelException
{
synchronized (regLock) {
if (!isOpen())
throw new ClosedChannelException();
if ((ops & ~validOps()) != 0)
throw new IllegalArgumentException();
if (blocking)
throw new IllegalBlockingModeException();
SelectionKey k = findKey(sel);
if (k != null) {
k.interestOps(ops);
k.attach(att);
}
if (k == null) {
// New registration
synchronized (keyLock) {
if (!isOpen())
throw new ClosedChannelException();
k = ((AbstractSelector)sel).register(this, ops, att);
addKey(k);
}
}
return k;
}
}
}
java.nio.channels. ServerSocketChannel
public abstract class ServerSocketChannel
extends AbstractSelectableChannel
implements NetworkChannel{
public abstract SocketChannel accept() throws IOException;
}
java.nio.channels.SelectionKey
public abstract class SelectionKey {
protected SelectionKey() { }
public abstract SelectableChannel channel();
public abstract Selector selector();
public static final int OP_READ = 1 << 0;
public static final int OP_WRITE = 1 << 2;
public static final int OP_CONNECT = 1 << 3;
public static final int OP_ACCEPT = 1 << 4;
private volatile Object attachment = null;
}
sun.nio.ch.WindowsSelectorImpl的doselect
class WindowsSelectorImpl extends SelectorImpl {
private final SubSelector subSelector = new SubSelector();
protected int doSelect(Consumer<SelectionKey> action, long timeout)
throws IOException
{
assert Thread.holdsLock(this);
this.timeout = timeout; // set selector timeout
processUpdateQueue();
processDeregisterQueue();
if (interruptTriggered) {
resetWakeupSocket();
return 0;
}
// Calculate number of helper threads needed for poll. If necessary
// threads are created here and start waiting on startLock
adjustThreadsCount();
finishLock.reset(); // reset finishLock
// Wakeup helper threads, waiting on startLock, so they start polling.
// Redundant threads will exit here after wakeup.
startLock.startThreads();
// do polling in the main thread. Main thread is responsible for
// first MAX_SELECTABLE_FDS entries in pollArray.
try {
begin();
try {
subSelector.poll();
} catch (IOException e) {
finishLock.setException(e); // Save this exception
}
// Main thread is out of poll(). Wakeup others and wait for them
if (threads.size() > 0)
finishLock.waitForHelperThreads();
} finally {
end();
}
// Done with poll(). Set wakeupSocket to nonsignaled for the next run.
finishLock.checkForException();
processDeregisterQueue();
int updated = updateSelectedKeys(action);
// Done with poll(). Set wakeupSocket to nonsignaled for the next run.
resetWakeupSocket();
return updated;
}
}
sun.nio.ch.WindowsSelectorImpl. SubSelector的subSelector.poll();
private final class SubSelector {
private final int pollArrayIndex; // starting index in pollArray to poll
// These arrays will hold result of native select().
// The first element of each array is the number of selected sockets.
// Other elements are file descriptors of selected sockets.
private final int[] readFds = new int [MAX_SELECTABLE_FDS + 1];
private final int[] writeFds = new int [MAX_SELECTABLE_FDS + 1];
private final int[] exceptFds = new int [MAX_SELECTABLE_FDS + 1];
// Buffer for readfds, writefds and exceptfds structs that are passed
// to native select().
private final long fdsBuffer = unsafe.allocateMemory(SIZEOF_FD_SET * 3);
private SubSelector() {
this.pollArrayIndex = 0; // main thread
}
private SubSelector(int threadIndex) { // helper threads
this.pollArrayIndex = (threadIndex + 1) * MAX_SELECTABLE_FDS;
}
private int poll() throws IOException{ // poll for the main thread
return poll0(pollWrapper.pollArrayAddress,
Math.min(totalChannels, MAX_SELECTABLE_FDS),
readFds, writeFds, exceptFds, timeout, fdsBuffer);
}
private int poll(int index) throws IOException {
// poll for helper threads
return poll0(pollWrapper.pollArrayAddress +
(pollArrayIndex * PollArrayWrapper.SIZE_POLLFD),
Math.min(MAX_SELECTABLE_FDS,
totalChannels - (index + 1) * MAX_SELECTABLE_FDS),
readFds, writeFds, exceptFds, timeout, fdsBuffer);
}
private native int poll0(long pollAddress, int numfds,
int[] readFds, int[] writeFds, int[] exceptFds, long timeout, long fdsBuffer);
private int processSelectedKeys(long updateCount, Consumer<SelectionKey> action)
throws IOException
{
int numKeysUpdated = 0;
numKeysUpdated += processFDSet(updateCount, action, readFds,
Net.POLLIN,
false);
numKeysUpdated += processFDSet(updateCount, action, writeFds,
Net.POLLCONN |
Net.POLLOUT,
false);
numKeysUpdated += processFDSet(updateCount, action, exceptFds,
Net.POLLIN |
Net.POLLCONN |
Net.POLLOUT,
true);
return numKeysUpdated;
}
private int processFDSet(long updateCount,
Consumer<SelectionKey> action,
int[] fds, int rOps,
boolean isExceptFds)
throws IOException
{
int numKeysUpdated = 0;
for (int i = 1; i <= fds[0]; i++) {
int desc = fds[i];
if (desc == wakeupSourceFd) {
synchronized (interruptLock) {
interruptTriggered = true;
}
continue;
}
MapEntry me = fdMap.get(desc);
// If me is null, the key was deregistered in the previous
// processDeregisterQueue.
if (me == null)
continue;
SelectionKeyImpl ski = me.ski;
// The descriptor may be in the exceptfds set because there is
// OOB data queued to the socket. If there is OOB data then it
// is discarded and the key is not added to the selected set.
SelectableChannel sc = ski.channel();
if (isExceptFds && (sc instanceof SocketChannelImpl)
&& ((SocketChannelImpl) sc).isNetSocket()
&& Net.discardOOB(ski.getFD())) {
continue;
}
int updated = processReadyEvents(rOps, ski, action);
if (updated > 0 && me.updateCount != updateCount) {
me.updateCount = updateCount;
numKeysUpdated++;
}
}
return numKeysUpdated;
}
}
java.lang. Iterable
public interface Iterable<T> {
Iterator<T> iterator();
default void forEach(Consumer<? super T> action) {
Objects.requireNonNull(action);
for (T t : this) {
action.accept(t);
}
}
default Spliterator<T> spliterator() {
return Spliterators.spliteratorUnknownSize(iterator(), 0);
}
}
java.lang. Collection
public interface Collection<E> extends Iterable<E> {
int size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
default boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
boolean removed = false;
final Iterator<E> each = iterator();
while (each.hasNext()) {
if (filter.test(each.next())) {
each.remove();
removed = true;
}
}
return removed;
}
boolean retainAll(Collection<?> c);
void clear();
boolean equals(Object o);
int hashCode();
@Override
default Spliterator<E> spliterator() {
return Spliterators.spliterator(this, 0);
}
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
default Stream<E> parallelStream() {
return StreamSupport.stream(spliterator(), true);
}
}
java.lang. List
public interface List<E> extends Collection<E> {
int size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean addAll(int index, Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
default void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final ListIterator<E> li = this.listIterator();
while (li.hasNext()) {
li.set(operator.apply(li.next()));
}
}
@SuppressWarnings({"unchecked", "rawtypes"})
default void sort(Comparator<? super E> c) {
Object[] a = this.toArray();
Arrays.sort(a, (Comparator) c);
ListIterator<E> i = this.listIterator();
for (Object e : a) {
i.next();
i.set((E) e);
}
}
void clear();
boolean equals(Object o);
int hashCode();
E get(int index);
E set(int index, E element);
void add(int index, E element);
E remove(int index);
int indexOf(Object o);
int lastIndexOf(Object o);
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);
List<E> subList(int fromIndex, int toIndex);
@Override
default Spliterator<E> spliterator() {
return Spliterators.spliterator(this, Spliterator.ORDERED);
}
}
java.util. Queue
public interface Queue<E> extends Collection<E> {
boolean add(E e);
boolean offer(E e);
E remove();
E poll();
E element();
E peek();
}
java.lang. Deque
public interface Deque<E> extends Queue<E> {
void addFirst(E e);
void addLast(E e);
boolean offerFirst(E e);
boolean offerLast(E e);
E removeFirst();
E removeLast();
E pollFirst();
E pollLast();
E getFirst();
E getLast();
E peekFirst();
E peekLast();
boolean removeFirstOccurrence(Object o);
boolean removeLastOccurrence(Object o);
boolean add(E e);
boolean offer(E e);
E remove();
E poll();
E element();
E peek();
void push(E e);
E pop();
boolean remove(Object o);
boolean contains(Object o);
public int size();
Iterator<E> iterator();
Iterator<E> descendingIterator();
}
java.util. AbstractCollection
public abstract class AbstractCollection<E> implements Collection<E> {
protected AbstractCollection() {
}
public abstract Iterator<E> iterator();
public abstract int size();
public boolean isEmpty() {
return size() == 0;
}
public boolean contains(Object o) {
Iterator<E> it = iterator();
if (o==null) {
while (it.hasNext())
if (it.next()==null)
return true;
} else {
while (it.hasNext())
if (o.equals(it.next()))
return true;
}
return false;
}
public Object[] toArray() {
// Estimate size of array; be prepared to see more or fewer elements
Object[] r = new Object[size()];
Iterator<E> it = iterator();
for (int i = 0; i < r.length; i++) {
if (! it.hasNext()) // fewer elements than expected
return Arrays.copyOf(r, i);
r[i] = it.next();
}
return it.hasNext() ? finishToArray(r, it) : r;
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
// Estimate size of array; be prepared to see more or fewer elements
int size = size();
T[] r = a.length >= size ? a :
(T[])java.lang.reflect.Array
.newInstance(a.getClass().getComponentType(), size);
Iterator<E> it = iterator();
for (int i = 0; i < r.length; i++) {
if (! it.hasNext()) { // fewer elements than expected
if (a == r) {
r[i] = null; // null-terminate
} else if (a.length < i) {
return Arrays.copyOf(r, i);
} else {
System.arraycopy(r, 0, a, 0, i);
if (a.length > i) {
a[i] = null;
}
}
return a;
}
r[i] = (T)it.next();
}
// more elements than expected
return it.hasNext() ? finishToArray(r, it) : r;
}
}
java.util. AbstractList
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
protected AbstractList() {
}
public Iterator<E> iterator() {
return new Itr();
}
public ListIterator<E> listIterator() {
return listIterator(0);
}
public ListIterator<E> listIterator(final int index) {
rangeCheckForAdd(index);
return new ListItr(index);
}
private class Itr implements Iterator<E> {
int cursor = 0;
int lastRet = -1;
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
public E next() {
checkForComodification();
try {
int i = cursor;
E next = get(i);
lastRet = i;
cursor = i + 1;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public E previous() {
checkForComodification();
try {
int i = cursor - 1;
E previous = get(i);
lastRet = cursor = i;
return previous;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.set(lastRet, e);
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
AbstractList.this.add(i, e);
lastRet = -1;
cursor = i + 1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
}
java.util. AbstractSequentialList
public abstract class AbstractSequentialList<E> extends AbstractList<E> {
protected AbstractSequentialList() {
}
public E get(int index) {
try {
return listIterator(index).next();
} catch (NoSuchElementException exc) {
throw new IndexOutOfBoundsException("Index: "+index);
}
}
public E set(int index, E element) {
try {
ListIterator<E> e = listIterator(index);
E oldVal = e.next();
e.set(element);
return oldVal;
} catch (NoSuchElementException exc) {
throw new IndexOutOfBoundsException("Index: "+index);
}
}
public void add(int index, E element) {
try {
listIterator(index).add(element);
} catch (NoSuchElementException exc) {
throw new IndexOutOfBoundsException("Index: "+index);
}
}
public E remove(int index) {
try {
ListIterator<E> e = listIterator(index);
E outCast = e.next();
e.remove();
return outCast;
} catch (NoSuchElementException exc) {
throw new IndexOutOfBoundsException("Index: "+index);
}
}
public boolean addAll(int index, Collection<? extends E> c) {
try {
boolean modified = false;
ListIterator<E> e1 = listIterator(index);
Iterator<? extends E> e2 = c.iterator();
while (e2.hasNext()) {
e1.add(e2.next());
modified = true;
}
return modified;
} catch (NoSuchElementException exc) {
throw new IndexOutOfBoundsException("Index: "+index);
}
}
public Iterator<E> iterator() {
return listIterator();
}
public abstract ListIterator<E> listIterator(int index);
}
Java.util.LinkedList主要方法
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;
transient Node<E> first;
transient Node<E> last;
public LinkedList() {
}
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
public boolean add(E e) {
linkLast(e);
return true;
}
}
Java.util.LinkedList.Node
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
Java.util.LinkedList.DescendingIterator
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}
Java.util.LinkedList.LLSpliterator
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}
public long estimateSize() { return (long) getEst(); }
public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}
public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
java.util.ArrayList主要方法
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L;
private static final int DEFAULT_CAPACITY = 10;
private static final Object[] EMPTY_ELEMENTDATA = {};
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
transient Object[] elementData; // non-private to simplify nested class access
private int size;
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
}
java.util.Map主要方法
public interface Map<K,V> {
int size();
boolean isEmpty();
boolean containsKey(Object key);
boolean containsValue(Object value);
V get(Object key);
V put(K key, V value);
V remove(Object key);
void putAll(Map<? extends K, ? extends V> m);
void clear();
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();
boolean equals(Object o);
int hashCode();
default V getOrDefault(Object key, V defaultValue) {
V v;
return (((v = get(key)) != null) || containsKey(key))
? v
: defaultValue;
}
default void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
for (Map.Entry<K, V> entry : entrySet()) {
K k;
V v;
try {
k = entry.getKey();
v = entry.getValue();
} catch(IllegalStateException ise) {
// this usually means the entry is no longer in the map.
throw new ConcurrentModificationException(ise);
}
action.accept(k, v);
}
}
default void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
for (Map.Entry<K, V> entry : entrySet()) {
K k;
V v;
try {
k = entry.getKey();
v = entry.getValue();
} catch(IllegalStateException ise) {
// this usually means the entry is no longer in the map.
throw new ConcurrentModificationException(ise);
}
// ise thrown from function is not a cme.
v = function.apply(k, v);
try {
entry.setValue(v);
} catch(IllegalStateException ise) {
// this usually means the entry is no longer in the map.
throw new ConcurrentModificationException(ise);
}
}
}
default V putIfAbsent(K key, V value) {
V v = get(key);
if (v == null) {
v = put(key, value);
}
return v;
}
default boolean remove(Object key, Object value) {
Object curValue = get(key);
if (!Objects.equals(curValue, value) ||
(curValue == null && !containsKey(key))) {
return false;
}
remove(key);
return true;
}
default boolean replace(K key, V oldValue, V newValue) {
Object curValue = get(key);
if (!Objects.equals(curValue, oldValue) ||
(curValue == null && !containsKey(key))) {
return false;
}
put(key, newValue);
return true;
}
default V replace(K key, V value) {
V curValue;
if (((curValue = get(key)) != null) || containsKey(key)) {
curValue = put(key, value);
}
return curValue;
}
default V computeIfAbsent(K key,
Function<? super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction);
V v;
if ((v = get(key)) == null) {
V newValue;
if ((newValue = mappingFunction.apply(key)) != null) {
put(key, newValue);
return newValue;
}
}
return v;
}
default V computeIfPresent(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
V oldValue;
if ((oldValue = get(key)) != null) {
V newValue = remappingFunction.apply(key, oldValue);
if (newValue != null) {
put(key, newValue);
return newValue;
} else {
remove(key);
return null;
}
} else {
return null;
}
}
default V compute(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
V oldValue = get(key);
V newValue = remappingFunction.apply(key, oldValue);
if (newValue == null) {
// delete mapping
if (oldValue != null || containsKey(key)) {
// something to remove
remove(key);
return null;
} else {
// nothing to do. Leave things as they were.
return null;
}
} else {
// add or replace old mapping
put(key, newValue);
return newValue;
}
}
default V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Objects.requireNonNull(value);
V oldValue = get(key);
V newValue = (oldValue == null) ? value :
remappingFunction.apply(oldValue, value);
if(newValue == null) {
remove(key);
} else {
put(key, newValue);
}
return newValue;
}
}
Java.util.Map.Entry
interface Entry<K,V> {
K getKey();
V getValue();
V setValue(V value);
boolean equals(Object o);
int hashCode();
public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K,V>> comparingByKey() {
return (Comparator<Map.Entry<K, V>> & Serializable)
(c1, c2) -> c1.getKey().compareTo(c2.getKey());
}
public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K,V>> comparingByValue() {
return (Comparator<Map.Entry<K, V>> & Serializable)
(c1, c2) -> c1.getValue().compareTo(c2.getValue());
}
public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) {
Objects.requireNonNull(cmp);
return (Comparator<Map.Entry<K, V>> & Serializable)
(c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
}
public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) {
Objects.requireNonNull(cmp);
return (Comparator<Map.Entry<K, V>> & Serializable)
(c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
}
}
java.util. AbstractMap主要方法
public abstract class AbstractMap<K,V> implements Map<K,V> {
public boolean containsKey(Object key) {
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
if (key==null) {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getKey()==null)
return true;
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (key.equals(e.getKey()))
return true;
}
}
return false;
}
public boolean containsValue(Object value) {
Iterator<Entry<K,V>> i = entrySet().iterator();
if (value==null) {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getValue()==null)
return true;
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (value.equals(e.getValue()))
return true;
}
}
return false;
}
public int hashCode() {
int h = 0;
Iterator<Entry<K,V>> i = entrySet().iterator();
while (i.hasNext())
h += i.next().hashCode();
return h;
}
java.util. SortedMap主要方法
public interface SortedMap<K,V> extends Map<K,V> {
Comparator<? super K> comparator();
SortedMap<K,V> subMap(K fromKey, K toKey);
SortedMap<K,V> headMap(K toKey);
SortedMap<K,V> tailMap(K fromKey);
K firstKey();
K lastKey();
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();
}
java.util. NavigableMap主要方法
public interface NavigableMap<K,V> extends SortedMap<K,V> {
Map.Entry<K,V> lowerEntry(K key);
K lowerKey(K key);
Map.Entry<K,V> floorEntry(K key);
K floorKey(K key);
Map.Entry<K,V> ceilingEntry(K key);
K ceilingKey(K key);
Map.Entry<K,V> higherEntry(K key);
K higherKey(K key);
Map.Entry<K,V> firstEntry();
Map.Entry<K,V> lastEntry();
Map.Entry<K,V> pollFirstEntry();
Map.Entry<K,V> pollLastEntry();
NavigableMap<K,V> descendingMap();
NavigableSet<K> navigableKeySet();
NavigableSet<K> descendingKeySet();
NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive);
NavigableMap<K,V> headMap(K toKey, boolean inclusive);
NavigableMap<K,V> tailMap(K fromKey, boolean inclusive);
SortedMap<K,V> subMap(K fromKey, K toKey);
SortedMap<K,V> headMap(K toKey);
SortedMap<K,V> tailMap(K fromKey);
}
java.util. HashMap主要方法
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
}
java.util. HashMap超过8个时候扩容为红黑树treeifyBin
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
java.util. HashMap.KeySet
final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
java.util. HashMap. EntrySet
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
java.util. HashMap. Node
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
java.util. HashMap. TreeNode
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* Ensures that the given root is the first node of its bin.
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
/**
* Calls find for root node.
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null
|| (movable
&& (root.right == null
|| (rl = root.left) == null
|| rl.left == null))) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
/**
* Recursive invariant check
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
java.util. TreeMap主要方法
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
private final Comparator<? super K> comparator;
private transient Entry<K,V> root;
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
final Entry<K,V> getEntryUsingComparator(Object key) {
@SuppressWarnings("unchecked")
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
}
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
}
Java.util.Set主要方法
public interface Set<E> extends Collection<E> {
int size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean retainAll(Collection<?> c);
boolean removeAll(Collection<?> c);
void clear();
boolean equals(Object o);
int hashCode();
@Override
default Spliterator<E> spliterator() {
return Spliterators.spliterator(this, Spliterator.DISTINCT);
}
}
java.util. AbstractSet主要方法
public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E> {
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Set))
return false;
Collection<?> c = (Collection<?>) o;
if (c.size() != size())
return false;
try {
return containsAll(c);
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
}
public int hashCode() {
int h = 0;
Iterator<E> i = iterator();
while (i.hasNext()) {
E obj = i.next();
if (obj != null)
h += obj.hashCode();
}
return h;
}
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
boolean modified = false;
if (size() > c.size()) {
for (Iterator<?> i = c.iterator(); i.hasNext(); )
modified |= remove(i.next());
} else {
for (Iterator<?> i = iterator(); i.hasNext(); ) {
if (c.contains(i.next())) {
i.remove();
modified = true;
}
}
}
return modified;
}
}
java.util. HashSet主要方法
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
{
static final long serialVersionUID = -5024744406713321676L;
private transient HashMap<E,Object> map;
private static final Object PRESENT = new Object();
public HashSet() {
map = new HashMap<>();
}
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
}
java.util. TreeSet主要方法
public class TreeSet<E> extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable
{
private transient NavigableMap<E,Object> m;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
TreeSet(NavigableMap<E,Object> m) {
this.m = m;
}
public TreeSet() {
this(new TreeMap<E,Object>());
}
public boolean add(E e) {
return m.put(e, PRESENT)==null;
}
}
Java.util. ServiceLoader主要方法
java.util.concurrent
java.util.concurrent. Semaphore
public class Semaphore implements java.io.Serializable {
private static final long serialVersionUID = -3222578661600680210L;
private final Sync sync;
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public void release() {
sync.releaseShared(1);
}
}
java.util.concurrent. Semaphore. FairSync
protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
java.util.concurrent. Semaphore.NonfairSync
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
java.util.concurrent. CyclicBarrier使用方法
package cn.java.threadmodel;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class MyCyclicBarrier {
public static void main(String[] args) {
final CyclicBarrier cyclicBarrier = new CyclicBarrier(10,()->{
System.out.println("所有人都准备好了裁判开始了");
});
for (int i = 0; i < 10; i++) {
//lambda中只能只用final的变量
final int times = i;
new Thread(() -> {
try {
System.out.println("子线程" +
Thread.currentThread().getName() + "正在准备");
Thread.sleep(1000 * times);
System.out.println("子线程" +
Thread.currentThread().getName() + "准备好了");
cyclicBarrier.await();
System.out.println("子线程" +
Thread.currentThread().getName() + "开始跑了");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
java.util.concurrent. CyclicBarrier使用主要属性
private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
/** The number of parties */
private final int parties;
private final Runnable barrierCommand;
private Generation generation = new Generation();
private int count;
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
java.util.concurrent. CyclicBarrier 的dowait使用ReentrantLock与Condition
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
java.util.concurrent. CountDownLatch使用demo
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(10);
for (int i = 0; i < 10; i++) {
//lambda中只能只用final的变量
final int times = i;
new Thread(() -> {
try {
System.out.println("子线程" + Thread.currentThread().getName() + "正在赶路");
Thread.sleep(1000 * times);
System.out.println("子线程" + Thread.currentThread().getName() + "到公司了");
//调用latch的countDown方法使计数器-1
latch.countDown();
System.out.println("子线程" + Thread.currentThread().getName() + "开始工作");
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
try {
System.out.println("门卫等待员工上班中...");
//主线程阻塞等待计数器归零
latch.await();
System.out.println("员工都来了,门卫去休息了");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
java.util.concurrent. CountDownLatch主要属性
private final Sync sync;
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
java.util.concurrent. CountDownLatch主要属性CountDownLatch与await方法
public CountDownLatch(int count) {
public void countDown() {
sync.releaseShared(1);
}
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
java.util.concurrent. Executor
java.util.concurrent. Executors
java.util.concurrent. AbstractExecutorService
java.util.concurrent. Future
java.util.concurrent. ForkJoinTask
java.util.concurrent. ForkJoinPool
java.util.concurrent.locks
java.util.concurrent.locks.lock
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
java.util.concurrent.locks. LockSupport
public class LockSupport {
private static final sun.misc.Unsafe UNSAFE;
private LockSupport() {} // Cannot be instantiated.
public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
UNSAFE.park(false, 0L);
setBlocker(t, null);
}
public static void unpark(Thread thread) {
if (thread != null)
UNSAFE.unpark(thread);
}
}
java.util.concurrent.locks. AbstractOwnableSynchronizer 中exclusiveOwnerThread重入线程
public abstract class AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 3737899427754241961L;
protected AbstractOwnableSynchronizer() { }
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}
}
java.util.concurrent.locks. AbstractQueuedSynchronizer
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 7373984972572414691L;
protected AbstractQueuedSynchronizer() { }
private transient volatile Node head;
private transient volatile Node tail;
private volatile int state;
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
}
java.util.concurrent.locks. AbstractQueuedSynchronizer.Node
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
final boolean isShared() {
return nextWaiter == SHARED;
}
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
java.util.concurrent.locks. ReentrantLock 重入锁
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
private final Sync sync;
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
abstract void lock();
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
}
java.util.concurrent.locks. Condition信号监听方法
public interface Condition {
void await() throws InterruptedException;
void awaitUninterruptibly();
long awaitNanos(long nanosTimeout) throws InterruptedException;
boolean await(long time, TimeUnit unit) throws InterruptedException;
boolean awaitUntil(Date deadline) throws InterruptedException;
void signal();
void signalAll();
}
java.util.concurrent.locks. ReentrantReadWriteLock 读写锁对象
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
private static final long serialVersionUID = -6992448646407690164L;
private final ReentrantReadWriteLock.ReadLock readerLock;
private final ReentrantReadWriteLock.WriteLock writerLock;
final Sync sync;
public ReentrantReadWriteLock() {
this(false);
}
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
}
java.util.concurrent.locks. ReentrantReadWriteLock.Sync 读锁方法tryReadLock
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
java.util.concurrent.locks. ReentrantReadWriteLock.Sync 写锁方法tryWriteLock
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerThread(current);
return true;
}
java.util.concurrent.atomic. AtomicReference
java.util.concurrent.atomic. AtomicInteger
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
public final int getAndSet(int newValue) {
return unsafe.getAndSetInt(this, valueOffset, newValue);
}
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
}
java.util.concurrent.atomic. AtomicReference
public class AtomicReference<V> implements java.io.Serializable {
private static final long serialVersionUID = -1848883965231344442L;
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicReference.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile V value;
public AtomicReference(V initialValue) {
value = initialValue;
}
public AtomicReference() {
}
public final boolean compareAndSet(V expect, V update) {
return unsafe.compareAndSwapObject(this, valueOffset, expect, update);
}
public final boolean weakCompareAndSet(V expect, V update) {
return unsafe.compareAndSwapObject(this, valueOffset, expect, update);
}
@SuppressWarnings("unchecked")
public final V getAndSet(V newValue) {
return (V)unsafe.getAndSetObject(this, valueOffset, newValue);
}
}
Nio
https://blog.csdn.net/goligu/article/details/127008749